What is #int_(2)^(3) (x-1)/(x^3)+x^2dx #?

1 Answer

#int_2^3 ((x−1)/x^3+x^2)dx=463/72 approx 6.4306#

Explanation:

First of all, let's split this integral (we can do this thanks to a property called linearity):
#int_2^3 ((x−1)/x^3+x^2)dx=int_2^3 x/x^3 dx - int_2^3 1/x^3 dx+int_2^3 x^2 dx=int_2^3 1/x^2 dx - int_2^3 1/x^3 dx+int_2^3 x^2 dx#

Now we can find a primitive function for each of the three integrand functions and evaluate them in the integration extrema:
#int_2^3 1/x^2 dx=int_2^3 x^(-2) dx=[x^{-1}/-1]_2^3=[-1/x]_2^3 =-1/3+1/2=1/6#
#int_2^3 1/x^3 dx=int_2^3 x^(-3) dx=[x^{-2}/-2]_2^3=[-1/(2x^2)]_2^3 =-1/18+1/8=5/72#
#int_2^3 x^2 dx=[x^3/3]_2^3=9-8/3=19/3#

Now we just sum up the three results (the second one has to be subtracted!) and get
#int_2^3 ((x−1)/x^3+x^2)dx=1/6-5/72+19/3=463/72#

Note: To calculate the three primitives, we used the same rule: all the functions of type #x^alpha# where #alpha in RR# with #alpha ne -1# admit #x^{alpha+1}/(alpha+1)# as a primitive function. If #alpha = -1# the primitive function is the natural logarithm.