#intsin(ln(x))dx#
Let's #u = ln(x)#
#du = dx/x#
#dx=xdu#
#x=e^u#
then
#inte^usin(u)du#
By part : #dv = e^u ; v = e^u ; w = sin(u) ; dw = cos(u) #
#[v*w]-intdw*v#
#inte^usin(u)du=[e^usin(u)]-inte^ucos(u)du#
By part again
#dv=e^u ; v = e^u ; w = cos(u) ; dw = -sin(u)#
#inte^usin(u)du=[e^usin(u)]-([e^ucos(u)]+inte^usin(u)du)#
#inte^usin(u)du=[e^usin(u)]-[e^ucos(u)]-inte^usin(u)du#
#2inte^usin(u)du=[e^usin(u)]-[e^ucos(u)]#
#inte^usin(u)du=1/2([e^usin(u)]-[e^ucos(u)])#
Substitute back for #u = ln(x)#
#intsin(ln(x))dx=1/2([xsin(ln(x))]-[xcos(ln(x))])#