How do you verify sec^4x-sec^2x=tan^4x+tan^2x? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Nghi N. ยท Noah G Nov 7, 2015 Verify sec^4 x - sec^2 x = tan ^4 x + tan^2 x Explanation: Left side ->sec^4 x - sec^2 x = 1/(cos^4 x) - 1/(cos^2 x) = ( 1 - cos^2 x)/(cos^4 x) = sin^2 x/(cos^4 x) = tan^2 x(1/(cos^2 x)) Apply the trig identity: 1/(cos^2 x) = (1 + tan^2 x), we get: Left side -> tan^2 x(1 + tan^2 x)= tan^4 x + tan^2 x. Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 76031 views around the world You can reuse this answer Creative Commons License