Prove that cos3x=4cos3x3cosx ?

1 Answer

Prove cos3x=4cos3x3cosx

Explanation:

Apply the trig identities:

  • cos(a+b)=cosacosbsinasinb
  • cos2x=2cos2x1
  • sin2x=2sinxcosx

We get:

cos3x=cos(x+2x)=cosxcos2xsinxsin2x

=cosx(2cos2x1)2sin2xcosx

=2cos3xcosx2cosx(1cos2x)

=2cos3xcosx2cosx+2cos3x

So

cos3x=4cos3x3cosx