Prove that cos3x=4cos3x−3cosx ? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Nghi N. · Stefan V. · Nghi N Nov 8, 2015 Prove cos3x=4cos3x−3cosx Explanation: Apply the trig identities: cos(a+b)=cosa⋅cosb−sina⋅sinb cos2x=2cos2x−1 sin2x=2sinx⋅cosx We get: cos3x=cos(x+2x)=cosx⋅cos2x−sinx⋅sin2x =cosx(2cos2x−1)−2sin2x⋅cosx =2cos3x−cosx−2cosx(1−cos2x) =2cos3x−cosx−2cosx+2cos3x So cos3x=4cos3x−3cosx Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 80627 views around the world You can reuse this answer Creative Commons License