What is the Taylor series for f(x)= cosxf(x)=cosx centered on x= pi/3x=π3?

1 Answer
Nov 10, 2015

f(x) = sum_(n=0)^oo ((-1)^nsin(pi/6 + (npi)/2))/(n!)(x-pi/3)^nf(x)=n=0(1)nsin(π6+nπ2)n!(xπ3)n

Explanation:

The Taylor series of a function f(x)f(x) centered about aa takes the form
f(x) = sum_(n=0)^oo f^((n))(a)/(n!)(x-a)^nf(x)=n=0f(n)(a)n!(xa)n

Looking at the derivatives of cosine, we have, for k in ZZ^+
f^((4k))(pi/3) = cos(pi/3) = 1/2
f^((4k+1))(pi/3) = -sin(pi/3) = -sqrt(3)/2
f^((4k+2))(pi/3) = -cos(pi/3) = -1/2
f^((4k+3))(pi/3) = sin(pi/3) = sqrt(3)/2

So we get

f(x) = (1/2)/(0!)(x-pi/3)^0 + (-sqrt(3)/2)/(1!)(x-pi/3)^1 + (-1/2)/(2!)(x-pi/3)^2 + ...

or, using the sine function to create a closed form,

f(x) = sum_(n=0)^oo ((-1)^nsin(pi/6 + (npi)/2))/(n!)(x-pi/3)^n