What is the equation of the line passing through #(11,17)# and #(23,11)#?

2 Answers
Nov 18, 2015

#x+2y=45#

Explanation:

1st point#=(x_1, y_1)=(11, 17)#
2nd point#=(x_2, y_2)=(23, 11)#

First, we will have to find the slope #m# of this line:

#m=(y_2-y_1)/(x_2-x_1)=(11-17)/(23-11)=-6/12=-1/2#

Now, use point-slope formula with one of the given points:
#y-y_1=m(x-x_1)#
#y-17=-1/2(x-11)#
#y-17=-1/2x+11/2#
#y=-1/2x+11/2+17#
#y=(-x+11+34)/2#
#2y=-x+45#
#x+2y=45#

Nov 18, 2015

#y = -x/2 + 45/2#

Explanation:

Usung the formula #y-y_1 = m(x-x_1)#
Considering
#(11, 17) and (23, 11)#
#(x_1, y_1) and (x_2, y_2)#

m (gradient) = #(y_2-y_1)/(x_2-x_1)#

m = #(11-17)/(23-11)#

m = #-6/12#

m = #-1/2#

#y-17 = -1/2(x-11)#
#y-17 = -x/2+11/2#
#y = -x/2+11/2+17#
#y = -x/2 + 45/2#

This is the equation of the line