What is the standard form of # f=(x - 2)(x - y)^2 #?

2 Answers
Dec 12, 2015

#f(x)=(x^3-2x^2y+xy^2-2x^2-2y^2+2xy)#

Explanation:

To rewrite a function in standard form, expand the brackets:

#f(x)=(x-2)(x-y)^2#

#f(x)=(x-2)(x-y)(x-y)#

#f(x)=(x-2)(x^2-xy-xy+y^2)#

#f(x)=(x-2)(x^2-2xy+y^2)#

#f(x)=(x^3-2x^2y+xy^2-2x^2+4xy-2y^2)#

#f(x)=(x^3-2x^2y+xy^2-2x^2-2y^2+4xy)#

Dec 15, 2015

#color(green)(x^3 -2x^2-2x^2y+4xy+xy^2-2y^2)#

Attempted to make clear what is happening by using color

Explanation:

Given: #(x-2)(x-y)^2..........................(1)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider #(x-y)^2#

Write as #color(brown)(color(blue)((x-y))(x-y))#

This is distributive so we have:

Every part of the blue bracket is multiplied by all of the brown bracket:

#color(brown)(color(blue)(x)(x-y)color(blue)(-y)(x-y)) #

Giving:

#x^2-xy -xy+y^2#

#x^2-2xy+y^2................................(2)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute (2) into (1) for #(x-y)^2# giving:

#color(brown)(color(blue)((x-2))(x^2-2xy+y^2)#

Every part of the blue bracket is multiplied by all of the brown bracket:

#color(brown)(color(blue)(x)(x^2-2xy+y^2)color(blue)(-2)(x^2-2xy+y^2)#

Giving:

#x^3-2x^2y +xy^2-2x^2+4xy-2y^2#

Changing the order giving x precedence over y

#color(green)(x^3 -2x^2-2x^2y+4xy+xy^2-2y^2)#