Consider the following image of the scenario
We know from second law of motion the acceleration of the COM is given by-
mgsinx-f=ma_{cm}mgsinx−f=macm
Where a_{cm}acm is the acceleration of center of mass
Calculating moments about COM, we get
f r= I\alphafr=Iα
Where r is the distance from the center where the friction is acting, I is moment of inertia and \alphaα is the angular scceleration about the COM.
Here, we use the fact that the object is rolling without slipping, therefore:
a_{cm}=\alpha racm=αr
Substituting this in the equation above we get
f r= I \frac{a_{cm}}{r}fr=Iacmr
f = I \frac{a_{cm}}{r^2}f=Iacmr2
Substituting a_{cm}acm from first equation into the equation above
a_{cm}= \frac{mgsinx-f}{m}acm=mgsinx−fm
f= \frac{I}{mr^2}(mgsinx-f)f=Imr2(mgsinx−f)
f(1+\frac{I}{mr^2})=mgsinx\frac{I}{mr^2}f(1+Imr2)=mgsinxImr2
f= \frac{mgsinx\frac{I}{mr^2}} {1+\frac{I}{mr^2}}f=mgsinxImr21+Imr2
Dividing numerator and denominator by \frac{I}{mr^2}Imr2 we get
f= \frac{mgsinx} {1+\frac{mr^2}{I}}f=mgsinx1+mr2I
Hence proved.