How do you find the derivative of (sin x + 2x) / (cos x - 2)sinx+2xcosx2?

1 Answer
Dec 13, 2015

f'(x) = (2xsinx-3)/(cosx-2)^2

Explanation:

f(x) = (sin x+2x)/(cos x-2)

This can be differentiate using quotient rule

f'(x) = [(cosx-2)*d/(dx)(sinx +2x)- (sinx+2x)*d/(dx)(cosx-2)]/(cosx-2)^2

=>f'(x) = [(cos x-2)(cos x+2)-(sinx+2x)(-sinx)]/(cosx-2)^2

=>f'(x) = (cos^2x -4 + sin^2x +2x sinx)/(cosx-2)^2

=>f'(x) = (color(red)(cos^2x +sin^2x)-4 +2x sinx)/(cosx-2)^2

=>f'(x) = (color(red)(1)-4+2x sinx)/(cosx-2)^2

f'(x) = (2xsinx-3)/(cosx-2)^2

*sin^2x + cos^2x = 1