How do you find the derivative of #(sin x + 2x) / (cos x - 2)#?
1 Answer
Dec 13, 2015
#f'(x) = (2xsinx-3)/(cosx-2)^2#
Explanation:
This can be differentiate using quotient rule
#=>f'(x) = (cos^2x -4 + sin^2x +2x sinx)/(cosx-2)^2#
#=>f'(x) = (color(red)(cos^2x +sin^2x)-4 +2x sinx)/(cosx-2)^2#
#=>f'(x) = (color(red)(1)-4+2x sinx)/(cosx-2)^2#
#f'(x) = (2xsinx-3)/(cosx-2)^2#
*