How do you prove 2tan(x)sec(x)=(11sin(x))(11+sin(x))?

1 Answer
Dec 14, 2015

See explanation...

Explanation:

Recall these identities involving trig functions:

Quotient Identity: tan(x)=sin(x)cos(x)
Reciprocal Identity: sec(x)=1cos(x)
Pythagorean Identity: 1sin2(x)=cos2(x)

Using these, we can rewrite the identity:

2tan(x)sec(x)=11sin(x)11+sin(x)
2sin(x)cos2(x)=11sin(x)11+sin(x)

We then make common denominators:

2sin(x)cos2(x)=1+sin(x)1sin2(x)1sin(x)1sin2(x)
2sin(x)cos2(x)=1+sin(x)(1sin(x))1sin2(x)
2sin(x)cos2(x)=2sin(x)1sin2(x)

And simplify using the Pythagorean Identity from above:

2sin(x)cos2(x)=2sin(x)cos2(x)