What is the vertex of y= 5x^2-x-1+(2x-1)^2y=5x2x1+(2x1)2?

1 Answer
Dec 16, 2015

vertex=(5/18, -25/36)=(518,2536)

Explanation:

Start by expanding the brackets and simplifying the expression.

y=5x^2-x-1+(2x-1)^2y=5x2x1+(2x1)2
y=5x^2-x-1+(4x^2-4x+1)y=5x2x1+(4x24x+1)
y=9x^2-5xy=9x25x

Take your simplified equation and complete the square.

y=9x^2-5xy=9x25x
y=9(x^2-5/9x+((5/9)/2)^2-((5/9)/2)^2)y=9x259x+(592)2(592)2
y=9(x^2-5/9x+(5/18)^2-(5/18)^2)y=9(x259x+(518)2(518)2)
y=9(x^2-5/9x+25/324-25/324)y=9(x259x+2532425324)
y=9(x^2-5/9x+25/324)-(25/324*9)y=9(x259x+25324)(253249)
y=9(x-5/18)^2-(25/color(red)cancelcolor(black)324^36*color(red)cancelcolor(black)9)
y=9(x-5/18)^2-25/36

Recall that the general equation of a quadratic equation written in vertex form is:

y=a(x-h)^2+k

where:
h=x-coordinate of the vertex
k=y-coordinate of the vertex

So in this case, the vertex is (5/18,-25/36).