How do you long divide #(2x^3+5x^2-36x+27) ÷ ( x-2)#?

1 Answer
Dec 20, 2015

Answer: #(2x^2 + 9x-18) -9/(x-2)#

Explanation:

Polynomial long division like so

Step 1 : Write the numerator in descending order

Step 2 : Start diving. Ask yourself how many time is #(2x^3)/x#

Step 3: Multiply the quotient from step 2, to the divisor and subtract form dividend.

Repeat step 2 and 3 until we can't divide any more.

The quotient for polynomial division is #Q(x) +(R(x))/(d(x))#

Q(x) = Quotient
R(x) = Remainder
d= divisor

#{: (,,color(white)("XX")2x^2,color(white)("XX")+9x,color(white)("XX")-18,), (x-2,")",bar(color(white)("XX")2x^3),bar(color(white)("XX")+5x^2),bar(color(white)("XX")-36x),bar(color(white)("XX")+27)), (,,color(white)("XX")2x^3,color(white)("XX")-4x^2,,), (,,bar(color(white)("XXX")),bar(color(white)("XX")9x^2),bar(color(white)("XX")-36x),bar(color(white)("XX")+27)), (,,,color(white)("XX")9x^2,color(white)("XX")-18x,), (,,,bar(color(white)("XXX")),bar(color(white)("XX")-18x),bar(color(white)("XX")+27)), (,,,,color(white)("XX")-18x,color(white)("XX")+36), (,,,,bar(color(white)("XXXX")),bar(color(white)("XXXX")-9)) :}#