If #f(x) = -2x^2 + 2x -2#. what is #f(a-1)#?
1 Answer
Dec 31, 2015
Explanation:
Replace each
#f(a-1)=-2(a-1)^2+2(a-1)-2#
First, distribute the squared terms. You can either write out
#=>-2(a^2-2a+1)+2(a-1)-2#
Distribute the
#=>-2a^2+4a-2+2a-2-2#
Group like terms.
#=>-2a^2+(4a+2a)+(-2-2-2)#
Add.
#=>-2a^2+6a-6#
Optionally factored:
#=>-2(a^2-3a+3)#