How do you differentiate f(x)= (4-x^2) *ln xf(x)=(4−x2)⋅lnx using the product rule?
1 Answer
Jan 2, 2016
Explanation:
Product rule:
h'= fg'+gf'
Note:
f'(x) = 1/x
Given
f'(x) = (4-x^2) d/dx(lnx) + lnx *d/dx(4-x^2)
= (4-x^2) (1/x) + -2x(lnx)
= (4-x^2)/x - (2x) (ln x) =
((4-x^2)-2x^2 * lnx)/x