How do you differentiate f(x)= (4-x^2) *ln xf(x)=(4x2)lnx using the product rule?

1 Answer
Jan 2, 2016

((4-x^2)-2x^2 * lnx)/x(4x2)2x2lnxx

Explanation:

Product rule: h = f*gh=fg

h'= fg'+gf'

Note: f(x) = ln x

f'(x) = 1/x

Given f(x) = (4-x^2)*lnx

f'(x) = (4-x^2) d/dx(lnx) + lnx *d/dx(4-x^2)

= (4-x^2) (1/x) + -2x(lnx)

= (4-x^2)/x - (2x) (ln x)

=((4-x^2)-2x^2 * lnx)/x