How do you differentiate #f(x)= (4-x^2) *ln x# using the product rule?
1 Answer
Jan 2, 2016
Explanation:
Product rule:
#h'= fg'+gf'#
Note:
#f'(x) = 1/x#
Given
#f'(x) = (4-x^2) d/dx(lnx) + lnx *d/dx(4-x^2)#
#= (4-x^2) (1/x) + -2x(lnx)#
# = (4-x^2)/x - (2x) (ln x) # =
#((4-x^2)-2x^2 * lnx)/x#