If f(x)= cos5 x and g(x) = e^(3+4x ) , how do you differentiate f(g(x)) using the chain rule?

1 Answer
Jan 5, 2016

Leibniz's notation can come in handy.

Explanation:

f(x)=cos(5x)

Let g(x)=u. Then the derivative:

(f(g(x)))'=(f(u))'=(df(u))/dx=(df(u))/(dx)(du)/(du)=(df(u))/(du)(du)/(dx)=

=(dcos(5u))/(du)*(d(e^(3+4x)))/(dx)=

=-sin(5u)*(d(5u))/(du)*e^(3+4x)(d(3+4x))/(dx)=

=-sin(5u)*5*e^(3+4x)*4=

=-20sin(5u)*e^(3+4x)