How do you write the partial fraction decomposition of the rational expression (x+2) / (x(x-4)) x+2x(x4)?

1 Answer
Jan 6, 2016

(x+2)/(x(x-4)) = 3/(2(x-4))-1/(2x) x+2x(x4)=32(x4)12x

Explanation:

(x+2)/(x(x-4))x+2x(x4)

(x+2)/(x(x-4)) = A/x + B/(x-4)x+2x(x4)=Ax+Bx4

(x+2)/(x(x-4)) =(A(x-4)+B(x))/(x(x-4))x+2x(x4)=A(x4)+B(x)x(x4)

(x+2) = A(x-4)+B(x)(x+2)=A(x4)+B(x)

Let x=0x=0 This done to remove the BB
(0+2) = A(0-4)+B(0)(0+2)=A(04)+B(0)

2=-4A2=4A

2/-4 =(-4A)/-424=4A4
-1/2 = A12=A

A=-1/2A=12

Now let x=4x=4 Which makes (x-4)(x4) as zero and thus eliminating AA and we can solve for BB

(4+2)=A(4-4)+B(4)(4+2)=A(44)+B(4)
6=4B6=4B
6/4 = (4B)/464=4B4
3/2 = B32=B

B=3/2B=32

Therefore,

(x+2)/(x(x-4)) = (-1/2)/x + (3/2)/(x-4)x+2x(x4)=12x+32x4

(x+2)/(x(x-4)) = -1/(2x) + 3/(2(x-4))x+2x(x4)=12x+32(x4)