(x+2)/(x(x-4))x+2x(x−4)
(x+2)/(x(x-4)) = A/x + B/(x-4)x+2x(x−4)=Ax+Bx−4
(x+2)/(x(x-4)) =(A(x-4)+B(x))/(x(x-4))x+2x(x−4)=A(x−4)+B(x)x(x−4)
(x+2) = A(x-4)+B(x)(x+2)=A(x−4)+B(x)
Let x=0x=0 This done to remove the BB
(0+2) = A(0-4)+B(0)(0+2)=A(0−4)+B(0)
2=-4A2=−4A
2/-4 =(-4A)/-42−4=−4A−4
-1/2 = A−12=A
A=-1/2A=−12
Now let x=4x=4 Which makes (x-4)(x−4) as zero and thus eliminating AA and we can solve for BB
(4+2)=A(4-4)+B(4)(4+2)=A(4−4)+B(4)
6=4B6=4B
6/4 = (4B)/464=4B4
3/2 = B32=B
B=3/2B=32
Therefore,
(x+2)/(x(x-4)) = (-1/2)/x + (3/2)/(x-4)x+2x(x−4)=−12x+32x−4
(x+2)/(x(x-4)) = -1/(2x) + 3/(2(x-4))x+2x(x−4)=−12x+32(x−4)