How do you expand ln (sqrt((3^-2)(5^3)(2^-2)))ln((32)(53)(22))?

1 Answer
Jan 8, 2016

ln(sqrt(3^-3*5^3*2^-2))=1/2(3ln(5)-2ln(2)-3ln(3))ln(335322)=12(3ln(5)2ln(2)3ln(3))

Explanation:

Given that ln(x)=log_exln(x)=logex
and are satisfied:
x>0,e>0,e!=1x>0,e>0,e1

We can apply the logarithmic properties:

ln(a*b)=ln(a)+ln(b)ln(ab)=ln(a)+ln(b)
ln(a/b)=ln(a)-ln(b)ln(ab)=ln(a)ln(b)
ln(a^b)=bln(a)ln(ab)=bln(a)

and remembering that:

a^(m/n)=root(n)(a^m)amn=nam
a^-m=1/a^mam=1am

then:

ln(sqrt(3^-3*5^3*2^-2))=ln((3^-3*5^3*2^-2)^(1/2))=ln(335322)=ln((335322)12)=
=1/2ln(3^-3*5^3*2^-2)=1/2(ln(3^-3)+ln(5^3)+ln(2^-2))==12ln(335322)=12(ln(33)+ln(53)+ln(22))=
=1/2(-3ln(3)+3ln(5)-2ln(2))=12(3ln(3)+3ln(5)2ln(2))

Alternitevely:

ln((3^-3*5^3*2^-2)^(1/2))=1/2ln(3^-3*5^3*2^-2)=ln((335322)12)=12ln(335322)=
=1/2ln(5^3/(3^3*2^2))==12ln(533322)=
=1/2(ln(5^3)-ln(3^3)-ln(2^2))==12(ln(53)ln(33)ln(22))=
=1/2(3*ln(5)-3ln(3)-2ln(2))=12(3ln(5)3ln(3)2ln(2))