How do you factor 27a^3-64b^327a364b3?

1 Answer
Jan 8, 2016

27a^3-64b^3=(3a-4b)(9a^2+12ab+16b^2)27a364b3=(3a4b)(9a2+12ab+16b2)

Explanation:

Remembering that:

a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

we can try to write

27a^3-64b^327a364b3

like a difference of cubes

27a^3-64b^3=3^3a^3-2^6b^3=3^3a^3-(2^2)^3b^3=27a364b3=33a326b3=33a3(22)3b3=
(3a)^3-4^3b^3=(3a)^3-(4b)^3(3a)343b3=(3a)3(4b)3

Now we can apply the rule:

27a^3-64b^3=(3a)^3-(4b)^3=27a364b3=(3a)3(4b)3=
=(3a-4b)((3a)^2+12ab+(4b)^2)=(3a4b)((3a)2+12ab+(4b)2)
=(3a-4b)(9a^2+12ab+16b^2)=(3a4b)(9a2+12ab+16b2)