How do you differentiate y =sqrt((3x-9)^3 using the chain rule?

1 Answer
Jan 8, 2016

h'(x)=d/dxsqrt((3x-9)^3)=9/2sqrt(3x-9)

Explanation:

given

h(x)=f(g(x))=(f@g)

The chain rule is

h'(x)=(f@g)'=f'(g(x))*g'(x)

h(x)=y=sqrt((3x-9)^3)=((3x-9)^3)^(1/2)=(3x-9)^(3/2)

then
f(x)=( )^(3/2)

f'(x)=3/2()^(3/2-1)

g(x)=(3x-9)

g'(x)=3

Apllying the rule

h'(x)=3/2(3x-9)^(3/2-1)*3=9/2(3x-9)^((3-2)/2)=9/2(3x-9)^(1/2)=
9/2sqrt(3x-9)

Alternatively:

f(x)=sqrt()

f'(x)=1/(2*sqrt())

g(x)=(3x-9)^3

it is a composite function too

g'(x)=3(3x-9)^(3-1)*d/dx(3x-9)=3(3x-9)^2*3=
=9(3x-9)^2

then:

h'(x)=(1/(2*sqrt((3x-9)^3)))9*(3x-9)^2=
=9/2*((3x-9)^2/(sqrt((3x-9)^2*(3x-9))))=
=9/2*((3x-9)^color(blue)cancel(2)/(color(blue)cancel((3x-9))*sqrt(3x-9)))=
=9/2(3x-9)/sqrt(3x-9)=9/2sqrt((3x-9)^color(blue)cancel(2)/color(blue)cancel((3x-9)))=
=9/2sqrt(3x-9)