What is the distance between (0, 0, 8) (0,0,8) and (8, 6, 2) (8,6,2)?

1 Answer
Jan 10, 2016

2sqrt(34)234 units.

Explanation:

The distance formula for Cartesian coordinates is

d=sqrt((x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2d=(x2x1)2+(y2y1)2+(z2z1)2
Where x_1, y_1,z_1x1,y1,z1, andx_2, y_2,z_2x2,y2,z2 are the Cartesian coordinates of two points respectively.
Let (x_1,y_1,z_1)(x1,y1,z1) represent (0,0,8)(0,0,8) and (x_2,y_2,z_2)(x2,y2,z2) represent (8,6,2)(8,6,2).
implies d=sqrt((8-0)^2+(6-0)^2+(2-8)^2d=(80)2+(60)2+(28)2
implies d=sqrt((8)^2+(6)^2+(-6)^2d=(8)2+(6)2+(6)2
implies d=sqrt(64+36+36d=64+36+36
implies d=sqrt(136d=136
implies d=2sqrt(34d=234 units

Hence the distance between the given points is 2sqrt(34)234 units.