How do you differentiate f(x)=(1-x)tan^2(2x) using the product rule?

1 Answer
Jan 11, 2016

Step by step working shown below.

Explanation:

f(x)=(1-x)tan^2(2x)

This problem would require product rule and chain rule.

The product rule.

(uv)'=uv'+vu'

f'(x) = (1-x)d/dx(tan^2(2x))+tan^2(2x)d/dx(1-x)

For derivating tan^2(2x) we need to use the chain rule.

f'(x) = (1-x){2tan(2x)d/dx(tan(2x))} + tan^2(2x)(-1)

f'(x)=(1-x){2tan(2x)sec^2(2x)d/dx(2x)} - tan^2(2x)

f'(x) = (1-x){2tan(2x)sec^2(2x)(2)}-tan^2(2x)

f'(x)=4(1-x)tan(2x)sec^2(2x)-tan^2(2x)