How do you find the asymptotes for y = log (x + 2)?

1 Answer
Jan 11, 2016

Vertical Asymptote:

x=-2

Explanation:

f(x)=log(g(x))

The Existence Condition is

g(x)>0

because log is definited AAx in (0,+oo)

g(x)=x+2

x+2>0

x> -2

Then:

F.E. (Field of Existence): (-2,+oo)

x=x_0=-2

Could be a vertical asymptote if

lim_(x rarr-2^+) f(x)=+-oo

lim_(x rarr-2^+) f(x)=lim_(x rarr-2^+) log(x+2)=

lim_(x rarr-2^+) log(0^+)=-oo

:. x=-2 vertical asymptote

We could looking for horizontal/slant asymptotes

lim_(x rarr +oo) f(x)=lim_(x rarr +oo)log(x+2)=+oo

:. no horizontal asymptotes

the slant asymptote formula is

y=mx+q

with

m=lim_(x rarr +oo)f(x)/x

q=lim_(x rarr +oo)[f(x)-mx]

m=lim_(x rarr +oo)f(x)/x=lim_(x rarr +oo)log(x+2)/x=(+oo)/(+oo)

Applying The L'Hopital's rule

lim_(x rarr +oo)(h(x))/(i(x))=lim_(x rarr +oo)(h'(x))/(i'(x))

lim_(x rarr +oo)log(x+2)/x=lim_(x rarr +oo)(1/(x+2))/1=

m=lim_(x rarr +oo)1/(x+2)=0

q=lim_(x rarr +oo)[f(x)-mx]=lim_(x rarr +oo)[log(x+2)-0x]=
=lim_(x rarr +oo)log(x+2)=+oo

It is not finite, then cancel(EE) slant asymptote