How do you rewrite #y = 4(3)^(2x+2)# in #y = a * b^x# form?

2 Answers
Jan 12, 2016

#y=4*3^(2x+2)=36*9^x#

with:

#a=36#
#b=9#

Explanation:

Remembering that:

#a^(p+q)=a^p*a^q#

#(a^n)^m=a^(n*m)#

then:

#y=4*3^(2x+2)=4*3^(2x)*3^2=#
#=4*9*(3^2)^x=36*9^x#

Jan 12, 2016

#y=4(3)^(2x+2)hArr y=36*9^x#

Explanation:

#4(3)^(2x+2)#

#color(white)("XXX")=4*((3^2)^(x+1))#

#color(white)("XXX")=4*(9^(x+1))#

#color(white)("XXX")=4*(9*9^x)#

#color(white)("XXX")=4*9*(9^x)#

#color(white)("XXX")=36*9^x#