How do you simplify ( 9 / 49) ^ (- 3 / 2)?

2 Answers

=27/(343

Explanation:

As per property:
(a/b)^color(blue)(m)= a^color(blue)(m)/(b^color(blue)(m

Applying the above to the expression :

(9/49)^ (-3/2) = 9^color(blue)(-3/2)/(49^color(blue)(-3/2

(3^2)^(color(blue)(-3/2))/((7^2)^color(blue)(-3/2

=(3^cancel2)^(-3/cancel2)/((7^cancel2)^(-3/cancel2)

color(blue)("~~~~~~~~~~~~~~Tony B Formatting test~~~~~~~~~~~~~~~~~~~")
(3^(cancel(2))) (3/(cancel(2)))

(3^(cancel(2)))^(3/(cancel(2)))

color(red)("The formatting code can not cope with changing the second") color(red)("bracket group into index form.")
color(blue)("'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")

=3^-3/(7^-3

=(1/27)/(1/343)

=343/27

Jan 18, 2016

(9/49)^(-3/2)=[(3/7)^2]^(-3/2)=(3/7)^-3=(7/3)^3=343/27

Explanation:

The minus in front of the index is instruction that this is a reciprocal

So we have: 1/((9/49)^(3/2))

This is ((49)^(3/2))/((9)^(3/2))

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider color(white)(..)9^(3/2)

This is the same as (sqrt(9)color(white)(.) )^3=3^3=27

Giving: ((49)^(3/2))/27

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider: 49^(3/2)

This is the same as (sqrt(49))^3=7^3=343

Giving: (343)/27 = 12 19/27