The distance formula for Cartesian coordinates is
d=sqrt((x_2-x_1)^2+(y_2-y_1)^2d=√(x2−x1)2+(y2−y1)2
Where x_1, y_1x1,y1, andx_2, y_2x2,y2 are the Cartesian coordinates of two points respectively.
Let (x_1,y_1)(x1,y1) represent (-10,6)(−10,6) and (x_2,y_2)(x2,y2) represent (5.2)(5.2).
implies d=sqrt((5-(-10))^2+(2-6)^2⇒d=√(5−(−10))2+(2−6)2
implies d=sqrt((5+10)^2+(2-6)^2⇒d=√(5+10)2+(2−6)2
implies d=sqrt((15)^2+(-4)^2⇒d=√(15)2+(−4)2
implies d=sqrt(225+16⇒d=√225+16
implies d=sqrt(241⇒d=√241
Hence the distance between the given points is sqrt(241)√241 units.