To find the derivative of sqrt(x-1)/sqrt(x)√x−1√x we can try the following
sqrt(x-1)/sqrt(x) = sqrt((x-1)/x)√x−1√x=√x−1x
on simplifying further
=sqrt(1-1/x)=√1−1x
Let us use chain rule.
Let y=sqrt(u)y=√u and u=1-1/xu=1−1x
By chain rule
dy/dx = dy/(du) xx (du)/dxdydx=dydu×dudx
y=sqrt(u)y=√u
dy/(du) = 1/(2sqrt(u))dydu=12√u
Substituting back for uu we get
dy/(du) = 1/(2sqrt(1-1/x))dydu=12√1−1x
Now we shall find our (du)/dxdudx
u=1-1/xu=1−1x
(du)/dx = 0- (-1/x^2)dudx=0−(−1x2)
(du)/dx = 1/x^2dudx=1x2
dy/dx = dy/(du) xx (du)/dxdydx=dydu×dudx
dy/dx = 1/(2sqrt(1-1/x)) xx 1/x^2dydx=12√1−1x×1x2
dy/dx = 1/(2sqrt((x-1)/x)) xx 1/x^2 dydx=12√x−1x×1x2
dy/dx = sqrt(x)/(2x^2sqrt(x-1))dydx=√x2x2√x−1