What is the derivative of sqrt(x - 1)/sqrtxx1x?

1 Answer
Jan 27, 2016

dy/dx = sqrt(x)/(2x^2sqrt(x-1))dydx=x2x2x1

Explanation:

To find the derivative of sqrt(x-1)/sqrt(x)x1x we can try the following
sqrt(x-1)/sqrt(x) = sqrt((x-1)/x)x1x=x1x
on simplifying further

=sqrt(1-1/x)=11x

Let us use chain rule.

Let y=sqrt(u)y=u and u=1-1/xu=11x

By chain rule

dy/dx = dy/(du) xx (du)/dxdydx=dydu×dudx

y=sqrt(u)y=u
dy/(du) = 1/(2sqrt(u))dydu=12u
Substituting back for uu we get
dy/(du) = 1/(2sqrt(1-1/x))dydu=1211x

Now we shall find our (du)/dxdudx

u=1-1/xu=11x
(du)/dx = 0- (-1/x^2)dudx=0(1x2)
(du)/dx = 1/x^2dudx=1x2

dy/dx = dy/(du) xx (du)/dxdydx=dydu×dudx
dy/dx = 1/(2sqrt(1-1/x)) xx 1/x^2dydx=1211x×1x2
dy/dx = 1/(2sqrt((x-1)/x)) xx 1/x^2 dydx=12x1x×1x2

dy/dx = sqrt(x)/(2x^2sqrt(x-1))dydx=x2x2x1