What is cos6xdx?

1 Answer
Jan 30, 2016

cos6xdx=516x+14sin2x+316sin4x148sin32x

Explanation:

cos6xdx

We can rewrite this function as;

(cos2x)3dx

Now we can rewrite cos2x using the half angle formula.

(12(1+cos(2x)))3dx

If we expand the expression we can get rid of the exponent.

18(1+3cos(2x)+3cos2(2x)+cos3(2x))dx

We can split up this expression using the sum rule.

18dx+38cos(2x)dx+38cos2(2x)dx+18cos3(2x)dx

The first integral is pretty straight forward. For the second, use the substitution u=2x,du=2dx.

18x+316sin(2x)+38cos2(2x)dx+18cos3(2x)dx

The remaining integrals are a little more involved.


We can use the half angle formula again to simplify the 3rd integral.

cos2(2x)dx=12(1+cos(4x))dx

=12dx+12cos(4x)dx

Use substitution again to solve the second integral.

12x+18sin(4x)


The last integral should be split up first.

cos3(2x)dx=cos2(2x)cos(2x)dx

Now we can use the Pythagorean theorem to replace cos2(2x).

(1sin2(2x))cos(2x)dx

cos(2x)dxsin2(2x)cos(2x)dx

12sin(2x)sin2(2x)cos(2x)dx

To solve the remaining integral, use the substitution u=sin(2x),du=2cos(2x)dx.

12sin(2x)16sin3(2x)


Plug the solved integrals into the original expression to get;

18x+316sin2x+38(12x+18sin4x)+18(12sin2x16sin32x)

Simplify by combining like terms.

516x+14sin2x+316sin4x148sin32x