How do you solve 2+cos(2x)=3cos(x) over the interval 0 to 2pi?

1 Answer
Feb 1, 2016

x=0,π3

Explanation:

We want a function in terms of either cos(x) or cos(2x), but not both. We can use the double angle formula to convert cos(2x) into an expression with cos(x).

Double Angle Formula
cos(2x)=2cos2(x)1

Applying the double angle formula to our function gives;

2+2cos2(x)1=3cos(x)

Or, after a little rearranging;

2cos2(x)3cos(x)+1=0

We can use the quadratic formula to factor this expression.

Quadratic Formula
b±b24ac2a where ax2+bx+c=0

Plugging in values for our function;

cos(x)=3±(3)24(2)(1)2(2)

cos(x)=3±984

cos(x)=3±14

cos(x)=1,12

A quick glance at a unit circle will show that;

cos(0)=1
cos(π3)=12

So;

x=0,π3