How do you find the roots, real and imaginary, of y= 2 x(x - 4) -(2x-1)^2 y=2x(x4)(2x1)2 using the quadratic formula?

1 Answer
Feb 2, 2016

We have two real roots: x = - 1 +- sqrt(2)/2x=1±22.

Explanation:

First of all, let's expand and simplify the expression.

y = 2x(x-4) - (2x-1)^2 y=2x(x4)(2x1)2

color(white)(x) = 2x^2 - 8x - (4x^2 - 4x + 1)x=2x28x(4x24x+1)

... use the formula (m-n)^2 = m^2 - 2mn + n^2(mn)2=m22mn+n2 ....

color(white)(x) = 2x^2 - 8x - 4x^2 + 4x - 1x=2x28x4x2+4x1

color(white)(x) = - 2x^2 - 4x - 1x=2x24x1

Now, we are ready to use the quadratic formula.

The formula is

x = (-b +- sqrt(b^2 - 4ac))/(2a)x=b±b24ac2a

In our case, a = -2a=2, b = -4b=4 and c = -1c=1. So, we have

x = (4 +- sqrt((-4)^2 - 4 * (-2) * (-1)))/(2 * (-2)) = (4 +- sqrt(16 - 8))/(-4) = (4 +- sqrt(8))/(-4) = (4 +- 2 sqrt(2))/(-4) = -1 +- sqrt(2)/2x=4±(4)24(2)(1)2(2)=4±1684=4±84=4±224=1±22

So, we have two real solutions:

x_1 = -1 + sqrt(2)/2 ~~ - 0.29x1=1+220.29

and

x_2 = -1 - sqrt(2)/2 ~~ -1.71x2=1221.71