How do you express f(theta)=sin^2(theta)-3cot^2(theta)+csc^4theta in terms of non-exponential trigonometric functions?

1 Answer
Feb 2, 2016

f(theta) = (1 - cos(2theta)) / 2 + ( 5 + 3 cos(4theta) )/( 3 - 4cos(2theta) + cos(4theta) )

Explanation:

Let me try to do that.

I hope that I have understood your question correctly - if anybody thinks that I have misinterpreted something, please let me know!

I will use the following identities:

csc (theta) = 1 / sin(theta), color(white)(xxxx) cot (theta) = cos(theta) / sin(theta)

sin^2(theta) = (1 - cos(2theta)) / 2

cos^2(theta) = (1 + cos(2theta)) / 2

=======================

First of all, let me show the sin^2(theta) and cos^2(theta) identities:

1a) Prove " "sin^2(theta) = (1 - cos(2theta)) / 2

I will use the identities

[1] color(white)(xxx) cos(x + y) = cos(x)cos(y) - sin(x) sin(y)

[2] color(white)(xxx) sin^2 (x) + cos^2 (x) = 1

Thus, it holds

cos(2 theta) = cos(theta + theta)

color(white)(xxxxx) stackrel([1])(=) cos(theta)cos(theta) - sin(theta)sin(theta)

color(white)(xxxxx) = cos^2(theta) - sin^2(theta)

color(white)(xxxxx) stackrel([2])(=) (1 - sin^2(theta)) - sin^2(theta)

color(white)(xxxxx) = 1 - 2 sin^2 theta

color(white)(xx)
<=> cos(2 theta) - 1 = - 2 sin^2 (theta)

<=> 1 - cos(2 theta) = 2 sin^2 (theta)

<=> (1 - cos(2 theta)) / 2 = sin^2 (theta)

=======================

1b) Prove " "cos^2(theta) = (1 + cos(2theta)) / 2

The proof is very similar to the one above:

cos(2 theta) stackrel([1])(=) cos(theta)cos(theta) - sin(theta)sin(theta)

color(white)(xxxxx) = cos^2(theta) - sin^2(theta)

color(white)(xxxxx) stackrel([2])(=) cos^2(theta) - (1 - cos^2(theta))

color(white)(xxxxx) = 2 cos^2(theta) - 1

<=> cos(2 theta) + 1 = 2 cos^2(theta)

<=> (cos(2 theta) + 1) / 2 = cos^2(theta)

=======================

2) Apply the identities

So, now I will apply the identities and simplify:

sin^2(theta) - 3 cot^2(theta) + csc^4(theta)

= sin^2(theta) - 3 [cos(theta)/sin(theta)]^2 + 1 / sin^4(theta)

= sin^2(theta) - (3cos^2(theta))/sin^2(theta) + 1 / [sin^2(theta)]^2

... combine the two latter fractions into one by determining the least common denominator...

= sin^2(theta) - (3cos^2(theta) * sin^2(theta))/(sin^2(theta) * sin^2(theta)) + 1 / [sin^2(theta)]^2

= sin^2(theta) + (- 3cos^2(theta)sin^2(theta) + 1)/[sin^2(theta)]^2

... apply the sin^2(theta) and cos^2(theta) identities...

= (1 - cos(2theta)) / 2 + (-3* (1 + cos(2theta)) / 2 * (1 - cos(2theta)) / 2 + 1)/([(1 - cos(2theta)) / 2]^2)

= (1 - cos(2theta)) / 2 + (-3* ((1 + cos(2theta))* (1 - cos(2theta))) / 4 + 4/4)/((1 - cos(2theta))^2 / 4)

... get rid of the double fractions by factoring 1/4 both in the numerator and the denominator and then canceling...

= (1 - cos(2theta)) / 2 + ( cancel(1/4) * (-3(1 + cos(2theta)) * (1 - cos(2theta)) + 4) )/(cancel(1/4) * (1 - cos(2theta))^2 )

= (1 - cos(2theta)) / 2 + ( -3(1 + cos(2theta)) * (1 - cos(2theta)) + 4 )/(1 - cos(2theta))^2

... use the formulas (a+b)(a-b) = a^2 - b^2 and (a-b)^2 = a^2 - 2ab + b^2...

= (1 - cos(2theta)) / 2 + ( -3(1^2 - cos^2(2theta)) + 4 )/(1^2 - 2cos(2theta) + cos^2(2 theta))

= (1 - cos(2theta)) / 2 + ( 1 + 3 cos^2(2 theta) )/(1 - 2cos(2theta) + cos^2(2 theta))

... apply the cos^2(theta) identity again...

= (1 - cos(2theta)) / 2 + ( 1 + 3 * (1 + cos(4theta)) / 2 )/(1 - 2cos(2theta) + (1 + cos(4theta)) / 2)

... again, get rid of the double fractions by factoring 1/2 both in the numerator and the denominator and then canceling...

= (1 - cos(2theta)) / 2 + ( cancel(1/2) (2 + 3 (1 + cos(4theta)) ) )/( cancel(1/2) (2 - 4cos(2theta) + (1 + cos(4theta)) ))

= (1 - cos(2theta)) / 2 + ( 2 + 3 (1 + cos(4theta)) )/( 2 - 4cos(2theta) + (1 + cos(4theta)) )

= (1 - cos(2theta)) / 2 + ( 5 + 3 cos(4theta) )/( 3 - 4cos(2theta) + cos(4theta) )

This is now a non-exponential expression that uses only the cos function.

Hope that this helped! :-)