Question #bf8db

1 Answer
Feb 3, 2016

63.435^@63.435

Explanation:

Consider the figure below

I created this figure using MS Excel

We know that
3VE=EK3VE=EK or EK=3VEEK=3VE
And
VE+EK=VKVE+EK=VK
Then

VE+3VE=VKVE+3VE=VK => VE=(VK)/4VE=VK4
Since VK=sqrt(2)*sVK=2s => VE=sqrt(2)/4*sVE=24s

Since triangle_(AFV)-=triangle_(FIV)-=triangle_(FIK)-=triangle_(AFK)AFVFIVFIKAFK
-> FV=(VK)/2FV=VK2 => FV=sqrt(2)/2*sFV=22s (and FI=FVFI=FV)
-> EF=FV-VE=sqrt(2)/2*s-sqrt(2)/4*sEF=FVVE=22s24s => EF=sqrt(2)/4*sEF=24s

In triangle_(EFI)EFI

EI^2=EF^2+FI^2=(sqrt(2)/4*s)^2+(sqrt(2)/2*s)^2=(2/16+2/4)s^2=(2+8)/16*s^2EI2=EF2+FI2=(24s)2+(22s)2=(216+24)s2=2+816s2 => EI=sqrt(10)/4*sEI=104s

Still in triangle_(EFI)EFI, using Law of Sines:

(EI)/(sin 90^@)=(FI)/(sin F hat E I)EIsin90=FIsinFˆEI => sin F hat E I=(FI*1)/(EI)=(sqrt(2)/2*cancel(s))/(sqrt(10)/4*cancel(s))=2*sqrt(2/10)=2/sqrt(5)
=>F hat E I=sin^(-1) (2/sqrt(5))=63.435^@