Question #bf8db
1 Answer
Explanation:
Consider the figure below
We know that
And
Then
VE+3VE=VKVE+3VE=VK =>VE=(VK)/4VE=VK4
SinceVK=sqrt(2)*sVK=√2⋅s =>VE=sqrt(2)/4*sVE=√24⋅s
Since
In
EI^2=EF^2+FI^2=(sqrt(2)/4*s)^2+(sqrt(2)/2*s)^2=(2/16+2/4)s^2=(2+8)/16*s^2EI2=EF2+FI2=(√24⋅s)2+(√22⋅s)2=(216+24)s2=2+816⋅s2 =>EI=sqrt(10)/4*sEI=√104⋅s
Still in
(EI)/(sin 90^@)=(FI)/(sin F hat E I)EIsin90∘=FIsinFˆEI =>sin F hat E I=(FI*1)/(EI)=(sqrt(2)/2*cancel(s))/(sqrt(10)/4*cancel(s))=2*sqrt(2/10)=2/sqrt(5)
=>F hat E I=sin^(-1) (2/sqrt(5))=63.435^@