What is #int x/ sqrt(x^2 - 8^2) dx#?
1 Answer
# int x/(sqrt(x^2 - 64)) "d"x = sqrt(x^2 - 64) + C#
where
Explanation:
#int x/(sqrt(x^2 - 8^2)) "d"x = int x/(sqrt(x^2 - 64)) "d"x#
Let's use integration by substitution here.
Let
#("d"u)/("d"x) = 1 / (2 sqrt(x^2 - 64)) * 2x = (cancel(2)x)/(cancel(2) sqrt(x^2 - 64)) = x / (sqrt(x^2 - 64))#
Multiply by
#"d"u = x / (sqrt(x^2 - 64)) "d"x#
As you can see, the substition seems to fit our integral perfectly. So we can start to substitute and solve the integral:
#int x/(sqrt(x^2 - 64)) "d"x = int 1 * color(blue)(x/(sqrt(x^2 - 64)) "d"x)#
... replace
#= int 1 color(white)(ii) color(blue)("d"u)#
... the integral of
#= u + C #
... re-substitute by replacing
#= sqrt(x^2 - 64) + C#
Hope that this helped!