How do you simplify sin(x+y)+tan(x-y)*cos(x+y) to trigonometric functions of x and y?

1 Answer
Feb 5, 2016

Use the following identities:

[1] " " tan(x) = sin(x) / cos(x)

[2] " " sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y)

[3] " " sin(x-y) = sin(x)*cos(y) - cos(x)*sin(y)

[4] " " cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y)

[5] " " cos(x-y) = cos(x)*cos(y) + sin(x)*sin(y)

[6] " " sin^2(x) + cos^2(x) = 1

Thus, you can transform:

sin(x+y) + tan(x - y) * cos(x + y)

stackrel("[1] ")(=) " " sin(x+y) + sin(x-y) / cos(x-y) * cos(x+y)

= " " sin(x+y) + (sin(x-y) cos(x+y))/cos(x-y)

stackrel("[2],[3],[4],[5]")(=) sin(x) cos(y) + cos(x) sin(y) + ((sin(x)cos(y) - cos(x) sin(y))*(cos(x)cos(y) - sin(x)sin(y))) / (cos(x)cos(y) + sin(x)sin(y))

= " " sin(x) cos(y) + cos(x) sin(y) + (sin(x)cos(x)cos^2(y) - sin(y)cos(y)cos^2(x) - sin(y)cos(y)sin^2(x) + sin (x)cos(x)sin^2(y)) / (cos(x)cos(y) + sin(x)sin(y))

= " " sin(x) cos(y) + cos(x) sin(y) + (color(green)(sin(x)cos(x)cos^2(y)) - sin(y)cos(y)cos^2(x) - sin(y)cos(y)sin^2(x) + color(green)(sin (x)cos(x)sin^2(y))) / (cos(x)cos(y) + sin(x)sin(y))

= " " sin(x) cos(y) + cos(x) sin(y) + ( sin(x)cos(x)(cos^2(y) + sin^2(y)) - sin(y)cos(y)(cos^2(x) + sin^2(x))) / (cos(x)cos(y) + sin(x)sin(y))

stackrel("[6] ")(=)" " sin(x) cos(y) + cos(x) sin(y) + (sin(x)cos(x) - sin(y)cos(y))/(cos(x)cos(y) + sin(x)sin(y))

Unfortunately, I don't see how you could efficiently simplify this expression any further.

Hope that helped!