How do you prove sec2xcot2(π2x)=1?

1 Answer
Feb 5, 2016

Using the following:

  • sec(x)=1cos(x)
  • cot(x)=cos(x)sin(x)
  • cos(x)=cos(x)
  • sin(x)=sin(x)
  • cos(xπ2)=sin(x)
  • sin(xπ2)=cos(x)
  • sin2(x)+cos2(x)=11sin2(x)=cos2(x)

We have

sec2(x)cot2(π2x)=sec2(x)cot2((xπ2))

=1cos2(x)cos2((xπ2))sin2((xπ2))

=1cos2(x)cos2(xπ2)sin(xπ2)

=1cos2(x)sin2(x)cos2(x)

=1sin2(x)cos2(x)

=cos2(x)cos2(x)

=1