How do you solve 8x+1=4x^28x+1=4x2 by quadratic formula?

2 Answers
Feb 7, 2016

8x+1=4x^28x+1=4x2

rarr8x=4x^2-18x=4x21

rarr4x^2-1-8x=04x218x=0

In standard form:

rarr4x^2-8x-1=04x28x1=0

Now this is a Quadratic equation (in form ax^2+bx^2+c=0ax2+bx2+c=0)

Use Quadratic formula:

x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

In this case a=4,b=-8,c=-1a=4,b=8,c=1

Substitute the values into the formula:

rarrx=(-(-8)+-sqrt((-8)^2-4(4)(-1)))/(2(4))x=(8)±(8)24(4)(1)2(4)

rarrx=(8+-sqrt(64-(-16)))/8x=8±64(16)8

rarrx=(8+-sqrt(64+16))/8x=8±64+168

rarrx=(8+-sqrt(80))/8x=8±808

rarrx=(8+-sqrt(16*5))/8x=8±1658

rarrx=(8+-4sqrt5)/8x=8±458

rarrx=(2+-sqrt5)/2x=2±52

(2+-sqrt(5))/(2)2±52

Explanation:

quadratic fomula

ax^2+bx+c=0ax2+bx+c=0

(-b+-sqrt(b^2 -4ac))/(2a)b±b24ac2a

so 8x+1=4x^28x+1=4x2

rarr4x^2-8x-1=04x28x1=0

rarr(-(-8)+-sqrt((-8)^2 -4(4)(-1)))/(2(4))(8)±(8)24(4)(1)2(4)

rarr(8+-sqrt(64 +16))/(8)8±64+168

rarr(8+-sqrt(80))/(8)8±808

rarr(8+-4sqrt(5))/(8)8±458

rarr(8+-4sqrt(5))/(8)8±458

rarr(2+-sqrt(5))/(2)2±52