Question #1c46e

1 Answer
Feb 7, 2016

Trisha - integrate by parts twice ...

Explanation:

u=sin(lnx)

du=[cos(lnx)]/x dx

dv=x dx

v=x^2/2

Now, using integration by parts ...

int xsin(lnx) dx=(x^2/2)(sin(lnx))-int(xcos(lnx))/2 dx

Do it again on the integral ...

u=cos(lnx)/2

du=-[sin(lnx)]/(2x) dx

dv=x dx

v=x^2/2

Using the integration by parts formula one more time ...

int xsin(lnx) dx=(x^2/2)(sin(lnx))-x^2cos(lnx)/4-1/4(intxsin(lnx))

Combine integral terms ...

(5/4)int xsin(lnx) dx=(x^2/2)(sin(lnx))-x^2cos(lnx)/4

Simplify ...

int xsin(lnx) dx=-x^2/5[cos(lnx)-2sin(lnx)]+C

hope that helped