Question #1c46e

1 Answer
Feb 7, 2016

Trisha - integrate by parts twice ...

Explanation:

#u=sin(lnx)#

#du=[cos(lnx)]/x dx#

#dv=x dx#

#v=x^2/2#

Now, using integration by parts ...

#int xsin(lnx) dx=(x^2/2)(sin(lnx))-int(xcos(lnx))/2 dx#

Do it again on the integral ...

#u=cos(lnx)/2#

#du=-[sin(lnx)]/(2x) dx#

#dv=x dx#

#v=x^2/2#

Using the integration by parts formula one more time ...

#int xsin(lnx) dx=(x^2/2)(sin(lnx))-x^2cos(lnx)/4-1/4(intxsin(lnx))#

Combine integral terms ...

#(5/4)int xsin(lnx) dx=(x^2/2)(sin(lnx))-x^2cos(lnx)/4#

Simplify ...

#int xsin(lnx) dx=-x^2/5[cos(lnx)-2sin(lnx)]+C#

hope that helped