The velocity of an object with a mass of 3 kg3kg is given by v(t)= sin 4 t + cos 3 t v(t)=sin4t+cos3t. What is the impulse applied to the object at t= pi /6 t=π6?

1 Answer
Feb 7, 2016

int F*d t=2,598 N*sFdt=2,598Ns

Explanation:

int F*d t=int m* d vFdt=mdv
d v=4*cos4 t*d t-3*sin 3 t*d tdv=4cos4tdt3sin3tdt
int F*d t=m(4 int cos 4t d t -3 int sin 3t d t)Fdt=m(4cos4tdt3sin3tdt)
int F*d t=m(4*1/4sin 4t +3*1/3 cos 3t )Fdt=m(414sin4t+313cos3t)
int F*d t=m(sin 4t +cos 3t)Fdt=m(sin4t+cos3t)
"for " t=pi/6for t=π6
int F*d t=m (sin 4*pi/6 +cos 3* pi/6 )Fdt=m(sin4π6+cos3π6)
int F*d t=m(sin (2*pi/3)+ cos ( pi/2))Fdt=m(sin(2π3)+cos(π2))
int F*d t=3(0,866+0)Fdt=3(0,866+0)
int F*d t=3* 0,866Fdt=30,866
int F*d t=2,598 N*sFdt=2,598Ns