How do you simplify #sqrt3/(sqrt6 -1) - sqrt3/(sqrt6 + 1)#?
1 Answer
Explanation:
You need to find the least common denominator to be able to subtract the two fractions.
In your case, the least common denominator is
#sqrt(3) / (sqrt(6) - 1) - sqrt(3) / (sqrt(6) + 1) = (sqrt(3)color(blue)((sqrt(6) + 1))) / ((sqrt(6) - 1)color(blue)((sqrt(6) + 1))) - (sqrt(3)color(green)((sqrt(6) - 1))) / ((sqrt(6) + 1)color(green)((sqrt(6) - 1))) #
# = (sqrt(3)(sqrt(6) + 1) - sqrt(3)(sqrt(6) - 1)) / ((sqrt(6) - 1)(sqrt(6) + 1))#
... use the formula
# = (sqrt(3) * sqrt(6) + sqrt(3) - sqrt(3) * sqrt(6) + sqrt(3)) / ((sqrt(6))^2 - 1^2)#
# = (cancel(sqrt(3) * sqrt(6)) + sqrt(3) - cancel(sqrt(3) * sqrt(6)) + sqrt(3)) / (6 - 1)#
# = (2 sqrt(3)) / 5#
# = 2/5 sqrt(3)#