How do you verify Cos 2x= 2 sin (x+pi/4) cos (x+pi/4)cos2x=2sin(x+π4)cos(x+π4)?
1 Answer
Feb 9, 2016
Explanation given below.
Explanation:
Verify
First let us understand two identities
color(Blue)(sin(2theta)=2sin(theta)cos(theta)sin(2θ)=2sin(θ)cos(θ)
color(Blue)(sin(pi/2 + theta) =cos(theta)sin(π2+θ)=cos(θ)
Now let us take our problem
Let us start with the Right Hand side
= 2sin(x+pi/4)cos(x+pi/4)=2sin(x+π4)cos(x+π4)
=sin(2(x+pi/4)=sin(2(x+π4) double angle formula for sine.
=sin(2x+pi/2)=sin(2x+π2)
=cos(2x)quad by the second identity shared above.