Using the limit definition for derivatives, how do you find the derivative of (a) f(x)=x^2-6x; (b) f(x)=4sqrt(x)?

2 Answers
Feb 12, 2016

1) f'(x) = 2x - 6

2) f'(x) = 2/sqrt(x)

Explanation:

1) f(x) = x^2 - 6x

According to the limit definition, the derivative of f(x) is

f'(x) = lim_(h-> 0) (f(x+h) - f(x))/h

To compute f(x+h), plug x+h for every occurance of x in f(x):

f(x+h) = (x+h)^2 - 6(x+h)

Thus, you can compute your derivative as follows:

f'(x) = lim_(h-> 0) ((x+h)^2 - 6(x+h) - (x^2 - 6x))/h

= lim_(h-> 0) (x^2 + 2xh + h^2 - 6x - 6h - x^2 + 6x)/h

= lim_(h-> 0) (color(blue)(cancel(x^2)) + 2xh + h^2 - color(red)(cancel(6x)) - 6h - color(blue)(cancel(x^2)) + color(red)(cancel(6x)))/h

= lim_(h-> 0) (2xh + h^2 - 6h)/h

... factor h in the numerator...

= lim_(h-> 0) (h(2x + h - 6))/h

... cancel h...

= lim_(h-> 0) (2x + h - 6)

... apply the limit, so plug h=0...

= 2x - 6

So, we have found that

f'(x) = 2x -6.

================================

2) f(x) = 4 sqrt(x)

f'(x) = lim_(h-> 0) (f(x+h) - f(x)) / h

= lim_(h-> 0) (4sqrt(x+h) - 4sqrt(x))/h

= lim_(h-> 0) (4(sqrt(x+h) - sqrt(x)))/h

... multiply the numerator and the denominator with (sqrt(x+h) + sqrt(x))...

= lim_(h-> 0) (4(sqrt(x+h) - sqrt(x))color(blue)((sqrt(x+h) + sqrt(x))))/(h color(blue)((sqrt(x+h) + sqrt(x))))

... use the formula (a+b)(a-b) = a^2 - b^2 to expand the numerator...

= lim_(h->0) (4((sqrt(x+h))^2 - (sqrt(x))^2 )) / (h (sqrt(x+h) + sqrt(x)))

= lim_(h->0) (4(x + h - x)) / (h (sqrt(x+h) + sqrt(x)))

= lim_(h->0) (4h) / (h (sqrt(x+h) + sqrt(x)))

... cancel h....

= lim_(h->0) (4) / (sqrt(x+h) + sqrt(x))

... apply the limit, so plug h=0...

= 4 / (sqrt(x + 0) + sqrt(x))

= 4 / (2 sqrt(x))

= 2 / sqrt(x)

So you have found your derivative and it's

f'(x) = 2 / sqrt(x)

Feb 12, 2016

If y=x^2-6x then dy/dx= 2x-6

If f(x)=4sqrt(x) then f'(x)=2/sqrt(x)

Explanation:

Question 1: color(black)(y=x^2-6x)
(using limit definition for derivative)
dy/dx = lim_(hrarr0)(((x+h)^2-6(x+h)) - (x^2-6x))/h

color(white)("XXX")=lim_(hrarro)(cancel(x^2)+2hx+h^2cancel(-6x)-6h-cancel(-x^2)cancel(+6x))/h

color(white)("XXX")=lim_(hrarr0)(2cancel(h)x-6cancel(h))/cancel(h)

color(white)("XXX")=2x-6

Question 2: color(black)(f(x)=4sqrt(x))
(using limit definition for derivative)
f'(x)=lim_(hrarr0)=(4sqrt(x+h)-4sqrt(x)/h

color(white)("XXX")=4lim_(hrarr0)((sqrt(x+h)-sqrt(x))/h)*((sqrt(x+h)+sqrt(x))/(sqrt(x+h)+sqrt(x)))

color(white)("XXX")=4lim_(hrarr0)(x+h-x)/(hsqrt(x+h)+sqrt(x))

color(white)("XXX")=4lim_(hrarr0)(cancel(h))/(cancel(h)sqrt(x+h)+sqrt(x))

color(white)("XXX")=4*1/(2sqrt(x))

color(white)("XXX")=2/sqrt(x)