How do you implicitly differentiate #-y= x^3y^2-3x^2y^3-7xy^4 #?

1 Answer
Feb 17, 2016

A useful timesaver is to use #y'# instead of #dy/dx# when differentiating y ... here is how it works:

Explanation:

#-y= x^3y^2-3x^2y^3-7xy^4#

Now, using the chain and product rules ...

#-y'= 3x^2y^2+x^3(2yy')-6xy^3-3x^2(3y^2y')-7y^4-7x(4y^3y')#

Next combine the #y'# terms on the left side of the equation ...

#y'[-1-x^3(2y)+3x^2(3y^2)+7x(4y^3)]=3x^2y^2-6xy^3-7y^4#

Finally, simplify and solve for #y'#

#y'=(3x^2y^2-6xy^3-7y^4)/[9x^2(y^2)+28x(y^3)-x^3(2y)-1]#

hope that helped