How do you differentiate g(y) =(2x-5 )(x^2 + 3) g(y)=(2x5)(x2+3) using the product rule?

1 Answer
Feb 18, 2016

If: g(x) = a(x)b(x)
then:
g'(x) = a'(x)b(x) + a(x)b'(x)
Hence for:
g(x)=(2x - 5)(x^2 + 3)g(x)=(2x5)(x2+3)
g'(x) = 6x^2 - 10x +6

Explanation:

If: g(x) = a(x)b(x)
then:
g'(x) = a'(x)b(x) + a(x)b'(x)

If: g(x)=(2x - 5)(x^2 + 3)
then: a=(2x - 5) and b=(x^2 + 3)
Derivative of a = a'(x) = 2
Derivative of b = b'(x) = 2x

Thus:
g'(x)=(2x-5)(2x)+(2)(x^2 + 3)
g'(x)=(4x^2 -10x) + (2x^2 + 6)
g'(x)=6x^2 - 10x +6