How do you verify (cosX+sinX)/(cscX+secX) = (cosX)(sinX)?

1 Answer
Feb 22, 2016

Using the definitions of secant and cosecant

  • csc(x) = 1/sin(x)
  • sec(x) = 1/cos(x)

We have

(cos(x)+sin(x))/(csc(x)+sec(x)) = (cos(x)+sin(x))/(1/sin(x)+1/cos(x))

=(cos(x)sin(x))/(cos(x)sin(x))*(cos(x)+sin(x))/(1/sin(x)+1/cos(x))

=cos(x)sin(x)*(cos(x)+sin(x))/((cos(x)sin(x))/sin(x)+(cos(x)sin(x))/cos(x))

=cos(x)sin(x)*(cos(x)+sin(x))/(cos(x)+sin(x))

=cos(x)sin(x)

(Note that this identity is only true where secant and cosecant are defined, that is, where sin(x)!=0 and cos(x)!=0)