How do you solve 2cos^2x+sinx+1=02cos2x+sinx+1=0 over the interval 0 to 2pi?

1 Answer
Feb 24, 2016

Possible solutions within the domain [0, 2pi][0,2π] are
x=(3pi)/2x=3π2

Explanation:

2cos^2x+sinx+1=02cos2x+sinx+1=0 can be written as

2(1-sin^2x)+sinx+1=02(1sin2x)+sinx+1=0, which can be simplified to

2sin^2x-sinx-3=02sin2xsinx3=0

As this is an equation of the type az^2+bz+c=0az2+bz+c=0, where z=sinxz=sinx, a=2a=2, b=-1b=1 and c=-3c=3, whose solution is given by (-b+-sqrt(b^2-4ac))/(2a)b±b24ac2a, we have

sinx=(-(-1)+-sqrt((-1)^2-4*2*(-3)))/(2.2)sinx=(1)±(1)242(3)2.2 or

sinx=(1+-sqrt25)/4sinx=1±254 or

sinx=(1+-5)/4sinx=1±54 i.e. sinx= 3/2 or -1sinx=32or1

As range of sinxsinx is within [-1,1}, it cannot be 3/232 and -11 isonly possibility.

Hence, possible solution within the domain [0, 2pi][0,2π] are

x=(3pi)/2x=3π2