If a, b, c are in A.P; we have 2b=a+c -------- (A)
If ap, bq, cr are in G.P; then (bq)^2=apxxcr or (rp)/q^2=b^2/(ac) ------- (B)
and as p, q, r are in H.P, 1/p, 1/q, 1/r are in A.P. and
2/q=1/p+1/r=(p+r)/(rp) or (p+r)=(2rp)/q ---------- (C)
Now (p/r)+(r/p)=(p^2+r^2)/(rp)=((p+r)^2-2pr)/(rp)=(p+r)^2/(rp)-2
Using relation (C) for (p+r), we get
(p/r)+(r/p)=((2rp)/q)^2xx1/(rp)-2 or
(p/r)+(r/p)=((4rp)/q^2)-2 and using (B) this becomes
(p/r)+(r/p)=((4b^2)/(ac))-2=(2b)^2/(ac)-2=(a+c)^2/(ac)-2 i.e.
(p/r)+(r/p)=((a+c)^2-2ac)/(ac)=(a^2+c^2)/(ac) or
(p/r)+(r/p)=(a/c)+(c/a)