How do you solve #cos 2x(2cosx+1) = 0# in the interval 0 to 2pi?

1 Answer
Feb 29, 2016

#\cos (2x)(2\cos (x)+1)=0,0\le \x\le \2\pi # =

#x=\frac{2\pi } {3},x=\frac{\pi }{4},x=\frac{3\pi }{4},x=\frac{5\pi }{4},x=\frac{4\pi }{3},x=\frac{7\pi }{4}#

Explanation:

Solving each part separately,
#\cos (2x)=0 or 2\cos (x)+1=0#

Now,
#\cos(2x)=0, 0\le x\le 2\pi #

General solutions for #cos(2x)=0#,
#cos(2x)=0# : #2x=pi/2 +2pin# , #2x=(3pi)/2+2pin#

Solving we get,
#2x=\frac{\pi }{2}+2\pi n :x=\frac{4\pi n+\pi }{4}#

#2x=\frac{3\pi }{2}+2\pi n :x=\frac{4\pi n+3\pi }{4}#

#x=\frac{4\pi n+\pi }{4},x=\frac{4\pi n+3\pi }{4}#

So,solution for the range #0\le x\le 2\pi #

#x=\frac{\pi }{4},x=\frac{3\pi }{4},x=\frac{5\pi }{4},x=\frac{7\pi }{4}#

Again,we have,
#2\cos(x)+1=0,0\le x\le 2\pi#

Isolating #cos(x)#
#cos(x) = -1/2#

General solutions for #cos(x)# = -1/2#

#\cos(x)=-\frac{1}{2}:\quad x=\frac{2\pi }{3}+2\pi n,quad x=\frac{4\pi }{3}+2\pi n#

Solutions for the range #0\le x\le 2\pi #
#x=\frac{2\pi }{3},x=\frac{4\pi }{3}#

Finally combining all the solutions,

#x=\frac{2\pi }{3},x=\frac{\pi }{4},x=\frac{3\pi }{4},x=\frac{5\pi }{4},x=\frac{4\pi }{3},x=\frac{7\pi }{4}#