How do you simplify #i44 + i150 - i74 - i109 + i61#?

1 Answer
Mar 1, 2016

1

Explanation:

We have,
#i^1=i#
#i^2= -1#
#i^3 = i^2 xx i = -i#
#i^4 = i^2 xx i^2 =(-1)^2 xx (-1)^2 = 1#
#i^5 = i^4 xx i = 1 xx i =i#
#i^6 = i^4 * i^2 = 1 * -1 = -1#
#i^7 = i^4 * i^3 = 1 * -i = -i #
#i^8 = i^4 * i^4 = 1 * 1 = 1#

Now,
#i^44 = (i^4) ^11 = (1)^11 = 1#
#i^150 = (i^4)^37 * i^2 = i^2 = -1#
#i^74 = (i^4)^18 * i^2 = i^2 = -1#
#i^109 = (i^4)^27 * i^1 = i #
#i^61 = (i^4)^15 * i^1 = i #

Finally,
#i^44 + i^150 - i^74 - i^109 + i^61#
#=(1) + (-1) - (-1) - (i) + (i)#
#=1 - 1 + 1 - i + i#
#= 1 #