How do you find the limit of (sin^2(x^2))/(x^4)sin2(x2)x4 as x approaches 0?

1 Answer
Mar 3, 2016

11

Explanation:

Let f(x)=(sin^2(x^2))/x^4f(x)=sin2(x2)x4

implies f'(x)=lim_(x to 0) (sin^2(x^2))/x^4

implies f'(x)=lim_(x to 0) (sin(x^2)*sin(x^2))/x^4=lim_(x to 0) {sin(x^2)/x^2*sin(x^2)/x^2}=lim_(x to 0)sin(x^2)/x^2lim_(x to 0)sin(x^2)/x^2*=1*1=1