How do you integrate int x^2 e^(4-x) dx using integration by parts?

1 Answer
Mar 5, 2016

-x^2e^(4-x)-2xe^(4-x)+2e^(4-x)+const.

Explanation:

For integration by parts it's used this scheme:

int udv=uv-int vdu

Making
dv=e^(4-x)dx => v=-e^(4-x)
u=x^2 => du=2xdx
Then the original expression becomes
=x^2(-e^(4-x))-int -e^(4-x)2xdx=-x^2e^(4-x)+2int xe^(4-x)dx

Applying integration by parts to int xe^(4-x)dx
Making
dv=e^(4-x)dx => v=-e^(4-x)
u=x => du=dx
We get
=x(-e^(4-x))-int e^(4-x)dx=-xe^(4-x)+e^(4-x)

Using the partial results in the main expression, we get
=-x^2e^(4-x)+2(-xe^(4-x)+e^(4-x))
=-x^2e^(4-x)-2xe^(4-x)+2e^(4-x)+const.