How do you write the expression (sqrt(2) - i)^6 in the standard form a + bi?

1 Answer
Mar 5, 2016

-23+i10sqrt(2)~=-23+i*14.142136

Explanation:

Calling
C=sqrt(2)-i
We can express C as |C| /_ phi
With
|C|=sqrt((sqrt(2))^2+1^2)=sqrt(2+1)=sqrt(3)
And, since #-90^@< phi0 phi=-tan^(-1)(1/sqrt(2))=-35.26439^@# = #C=sqrt(3)" " /_-35.26439^@#

Then

C^6=(sqrt(3))^6" "/_6*(-35.26439^@)
C^6=27" "/_-211.58634^@
C^6=27cos(-211.58634^@)+i*27sin(-211.58634^@)
C^6=-23+i14.142136
If you like, reminding that sqrt(2)=1.4142136
C^6=-23+i10sqrt(2)